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1. Introduction 2. Fused Logit Attend Tiling (FLAT): Optimized Dataflow for Attention

Attention is a key primitive for Transformer architectures

● Forms the foundation of next-generation Deep Neural Network (DNN) models
● A growing fraction of run time with increasing sequence lengths (e.g., GPT-4: 32K)

Attention operators exhibit different properties from prior DNN primitives
E.g., Convolutions (CNN), Embeddings (recommendation models), Fully-connected (FC)

1. Fundamentally low operational-intensity i.e., memory-bandwidth bound
⇒ Standard data-flow that exploit intra-operator reuse are ineffective

2. Quadratic growth in memory with sequence length
⇒ Places pressure on off-chip memory bandwidth and on-chip memory capacity

3. Evaluation 4. Impact and Implications 

Compute-bound ⇒ Intra-operator 
dataflow to improve reuse is 
effective

Memory-bound ⇒ 
Intra-operator dataflow is not 
effective

Employ cross-operator fusion ⇒ Fuse Logit and Attend operatorsFLAT
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● Fused operator has higher effective operational intensity ⇒ not as memory-bound
● Ameliorates off-chip memory bandwidth and on-chip memory capacity demand

Unique considerations entails unique engineering solutionsDetails

● Intervening activation function (softmax) not element-wise 
Reduction requires specific slices of data ⇒ Imposes data dependencies

● FLAT develops an effective tiling and data movement strategy that respects data 
dependencies while enabling cross-operator fusion

FLAT enables larger batch size and 

larger sequence length on real 

systems (GPU)

FLEX requires 2x more on-chip buffer 

to match the performance of FLAT
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FLAT on GPU

FLAT is simple, effective and impactful

● Enables improved performance on GPUs and TPUs (via XLA compiler) on deployed models
● Enables use-cases not previously possible: long sequence, larger batch size

Implications for accelerator co-design

● Demonstrates importance of cross-operator fusion for foundational Transformer models
○ De-facto for (current and) future accelerators (e.g., similar ideas in FlashAttention)
○ Critical input in design-space exploration: e.g., on-chip buffer size, off-chip memory bandwidth

● New efficient attention algorithms present new compute-memory tradeoffs
○ A new landscape of opportunities for dataflow and codesign!
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