

Felix Kao, Suvinay Subramanian, Gaurav Agrawal, Amir Yazdanbakhsh, Tushar Krishna {felixkao, suvinay, chipguy, ayazdan}@google.com, tushar@ece.gatech.edu | ASPLOS 2023, Vancouver, Canada | Tuesday, March 28, Section 5C: Machine Learning

1. Introduction

Attention is a key primitive for Transformer architectures

- Forms the foundation of next-generation Deep Neural Network (DNN) models
- A growing fraction of run time with increasing sequence lengths (e.g., GPT-4: 32K)

Attention operators exhibit different properties from prior DNN primitives E.g., Convolutions (CNN), Embeddings (recommendation models), Fully-connected (FC)

- 1. Fundamentally low operational-intensity i.e., memory-bandwidth bound \Rightarrow Standard data-flow that exploit intra-operator reuse are ineffective
- 2. Quadratic growth in memory with sequence length \Rightarrow Places pressure on off-chip memory bandwidth and on-chip memory capacity

-										
	Runtime	Sequence Length (Batch Size=1)								
	(ms)	128	512	2K	4K	16K	64K	12		
	Baseline	12	74	697	OOM	OOM	OOM	00		
	FLAT	11	43	175	424	4,599	64,350	00		
8										

Runtime	Batch Size (Sequence Length=256)							
(ms)	1	16	64	128	256	1K		
Baseline	36	630	2,520	5,230	OOM	OOM	OC	
FLAT	28	480	1,870	3,740	7,560	34,010	OC	

FLAT: An Optimized Dataflow for **Mitigating Attention Bottlenecks**

FLEX requires 2x more on-chip buffer to match the performance of **FLAT**

28K OM OM 2K DM DM

FLAT enables larger batch size and larger sequence length on real systems (GPU)

Employ cross-operator fusion \Rightarrow Fuse Logit and Attend operators FLAT

- Fused operator has higher effective operational intensity ⇒ not as memory-bound
- Ameliorates off-chip memory bandwidth and on-chip memory capacity demand

Unique considerations entails unique engineering solutions Details

- Intervening activation function (softmax) not element-wise Reduction requires specific slices of data \Rightarrow Imposes data dependencies
- FLAT develops an effective tiling and data movement strategy that respects data dependencies while enabling cross-operator fusion

4. Impact and Implications

- **FLAT** is simple, effective and impactful
- Enables improved performance on **GPUs and TPUs** (via XLA compiler) on deployed models • Enables use-cases not previously possible: long sequence, larger batch size

Implications for accelerator co-design

- Demonstrates importance of cross-operator fusion for foundational Transformer models
 - De-facto for (current and) future accelerators (e.g., similar ideas in *FlashAttention*)
- New <u>efficient</u> attention algorithms present new compute-memory tradeoffs
 - A new landscape of opportunities for dataflow and codesign!

32x

Sequence Length

⇒ Intra-operator dataflow to improve reuse is Memorv-bound ⇒

Intra-operator dataflow is **not** effective

• Critical input in design-space exploration: e.g., on-chip buffer size, off-chip memory bandwidth

